14.7 (part 2) : Global Max/Min

2D Intro to Global Max/Min

First, a review of calculus 1…

Do you remember how to do this? Find the global max/min of:

 $A) f(x) = 2x^2 + 9$ on $0 \le x \le 2$. B) $g(x) = 4x^2 - 4x + 9$ on $0 \le x \le 2$. C) $h(y) =$ 9 on $0 \le y \le 4$.

must occur @ end point or critical point

t'(x)=4x =0 x=0

I

Global (or Absolute) Max/Min:

Given

- A surface: $z = f(x, y)$
- A region on the xy -plane: R

Want

Biggest and smallest z over this region.

How

- *Step 1*: Draw Region, label sides
- *Step 2*: "Inside". Find all critical pts.
- *Step 3*: "Boundary"

Over each boundary curve, plug into surface and solve the resulting one variable max/min problem.

Keep track of your outputs throughout.

biggest $z =$ global max smallest $z =$ global min

F'18 – Exam 2 – Loveless

Find the global max of

$$
f(x, y) = 4x^2 - xy + 9
$$

over the triangular region with corners at (0,0), (0,4), and (2,4).

- *[Solutions](https://sites.math.washington.edu/~aloveles/Math126Materials/f18m126e2solns.pdf) (see 3(b))*
- *Visuals:<https://www.math3d.org/5lTfUKmA>*

$Sp'18 - Exam2 - Loveless$

Find the absolute max and min of $f(x, y) = 3y - xy$ over the region bounded by $y = x^2$, $y = 0$, $\& x = 4$.

- Solutions (see 3(a))
- Visuals: https://www.math3d.org/dsH5kXHT

W'15 – Exam 2 – Loveless

Find the global max and min of $f(x, y) = x^2 + 4y - x^2y + 1$ over the region bounded by $y = 0$ and $y = 2 - \frac{1}{2}$ x^2 .

 $\overline{\mathbf{c}}$

- *[Solutions](https://sites.math.washington.edu/~aloveles/Math126Materials/w15m126e2solns.pdf) (see 4(b))*
- **Visuals:** <https://www.math3d.org/eaVxWB1i>

15.1 Iterated Integrals – Double Integral Intro

Try this…

- Treat y as a constant.
- Integrate "inside" with respect to x.
- Then integrate with respect to y.

$$
\int\limits_{0}^{2} \left(\int\limits_{1}^{2} 8xy^{2} \, dx \right) dy =
$$

Try again in the reversed order:

$$
\int_{1}^{2} \left(\int_{0}^{2} 8xy^{2} dy \right) dx =
$$

15.1-15.2 Theory Overview

Given

1. $z = f(x, y)$ 2. A region, *R*, in the *xy*-plane.

$$
\iint\limits_R f(x, y) dA = \lim\limits_{m,n \to \infty} \sum\limits_{i=1}^m \sum\limits_{j=1}^n f(x_{ij}, y_{ij}) \Delta A
$$

= 'signed' volume between *f*(*x*, *y*) and *R*.

General Notes:

Gives a number!

- If *f(x,y)* is above the *xy*-plane it is *positive*.
- If *f(x,y)* is below the *xy*-plane it is *negative*.

Symbol Notes:

 ΔA = area of base = $\Delta x \Delta y = \Delta y \Delta x$

 $f(x_{ij}, y_{ij})\Delta A$ = (height)(area of base) = volume of one approximating box

Units of $\iint_R f(x, y) dA$ are (units of $f(x,y)$)(units of x)(units of y)

Theory/Approximation Example

Example: Estimate the volume under

- $z = f(x, y) = x + 2y^2$ and above $R = [0,2] \times [0,4]$ $= \{(x,y): 0 \le x \le 2, 0 \le y \le 4 \}$
- (a) Break the region R into $m = 2$ columns and $n = 2$ rows; 4 sub-regions;
- (b) Approx. using a rectangular box over each region (use *upper-right* endpts).

Iterated Integrals Theory

If you fix x: The area under this curve is

 \boldsymbol{d} "cross sectional area $\int f(x, y) dy =$ under the surface at this fixed x value" \mathcal{C} ZA \overline{C} $A(x)$ θ \mathbf{y}

If you fix y: The area under this curve

From Math 125,
\n
$$
Vol = \int_{a}^{b} \text{Area}(x) dx = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx \qquad Vol = \int_{c}^{d} \text{Area}(y) dy = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy
$$

Two basic examples to help you visualize:

You try to evaluate

$$
(a) \int\limits_{0}^{3} \left(\int\limits_{0}^{2} 5 \, dx \right) dy
$$

(b) $\begin{array}{|c|c|c|c|c|} \hline \end{array}$ $\begin{array}{|c|c|c|c|c|} \hline 2 - x \, dx & \end{array}$ $\overline{\mathbf{c}}$ $\boldsymbol{0}$ $\int dy$ ଷ $\boldsymbol{0}$

Visuals for (a):<https://www.math3d.org/4HzHYfIJ> *Visuals for (b):* <https://www.math3d.org/FL8kzBB1>

"Hard" 15.1 HW Problem

Compute

$$
\iint\limits_R \frac{2x}{1+xy} dA
$$

over $R = [0,2] x [0,1].$

Preview of 15.2

Evaluate
\n
$$
\int_{0}^{7} \int_{y/7}^{1} 2e^{x} dx dy
$$

Also try evaluating (this should come out to the same number, see if it does)

$$
\int\limits_{0}^{1} \int\limits_{0}^{7x} 2e^{x} dy dx
$$

Visual: <https://www.math3d.org/YKdmMST9>

More 15.2 Preview:

Calculus II review and 15.2 Warm up

Draw and describe the region bounded by

$$
y = x^2, y = 2x + 3
$$

- (a) …in terms of x?
- (b) …in terms of y?